Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0301124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547300

RESUMO

BACKGROUND: Activities embedded in academic culture (international conferences, field missions) are an important source of greenhouse gas emissions. For this reason, collective efforts are still needed to lower the carbon footprint of Academia. Serious games are often used to promote ecological transition. Nevertheless, most evaluations of their effects focus on changes in knowledge and not on behaviour. The main objectives of this study are to 1) Evaluate the feasibility of a control and an experimental behaviour change intervention and, 2) Evaluate the fidelity (the extent to which the implementation of the study corresponds to the original design) of both interventions. METHODS: People employed by a French research organisation (N = 30) will be randomised to one of the two arms. The experimental arm consists in a 1-hour group discussion for raising awareness about climate change, carrying out a carbon footprint assessment and participating to a serious game called "Ma terre en 180 minutes." The control arm consists of the same intervention (1h discussion + carbon footprint assessment) but without participating to the serious game. On two occasions over one month, participants will be asked to fill in online surveys about their behaviours, psychological constructs related to behaviour change, sociodemographic and institutional information. For every session of intervention, the facilitators will assess task completion, perceived complexity of the tasks and the perceived responsiveness of participants. Descriptive statistics will be done to analyse percentages and averages of the different outcomes. DISCUSSION: Ma-terre EVAL pilot study is a 1-month and a half pilot randomised controlled trial aiming to evaluate the feasibility and the fidelity of a 24-month randomised controlled trial. This study will provide more information on the levers and obstacles to reducing the carbon footprint among Academia members, so that they can be targeted through behaviour change interventions or institutional policies.


Assuntos
Academia , Pegada de Carbono , Humanos , Projetos Piloto , França
2.
Reg Environ Change ; 22(3): 93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161075

RESUMO

Intensification of the hydrological cycle resulting from climate change in West Africa poses significant risks for the region's rapidly urbanising cities, but limited research on flood risk has been undertaken at the urban domain scale. Furthermore, conventional climate models are unable to realistically represent the type of intense storms which dominate the West African monsoon. This paper presents a decision-first framing of climate research in co-production of a climate-hydrology-flooding modelling chain, linking scientists working on state-of-the-art regional climate science with decision-makers involved in city planning for future urban flood management in the city of Ouagadougou, Burkina Faso. The realistic convection-permitting model over Africa (CP4A) is applied at the urban scale for the first time and data suggest significant intensification of high-impact weather events and demonstrate the importance of considering the spatio-temporal scales in CP4A. Hydrological modelling and hydraulic modelling indicate increases in peak flows and flood extents in Ouagadougou in response to climate change which will be further exacerbated by future urbanisation. Advances in decision-makers' capability for using climate information within Ouagadougou were observed, and key recommendations applicable to other regional urban areas are made. This study provides proof of concept that a decision-first modelling-chain provides a methodology for co-producing climate information that can, to some extent, bridge the usability gap between what scientists think is useful and what decision-makers need. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-022-01943-x.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36011739

RESUMO

Climate changes in the eastern part of Sahelian regions will induce an increase in rainfalls and extreme climate events. In this area, due to the intense events and floods, malaria transmission, a climate sensitive disease, is thus slowly extending in time to the drought season and in areas close to the border of the desert. Vectors can as well modify their area of breeding. Control programs must be aware of these changes to adapt their strategies.


Assuntos
Mudança Climática , Malária , Inundações , Humanos , Malária/epidemiologia , Estações do Ano
4.
Nature ; 544(7651): 475-478, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28447639

RESUMO

The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms-mesoscale convective systems (MCSs)-poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in 'extreme' daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models.


Assuntos
Inundações/estatística & dados numéricos , Chuva , Imagens de Satélites , África Subsaariana , África do Norte , Convecção , Aquecimento Global/estatística & dados numéricos , Modelos Teóricos , Estações do Ano , Temperatura , Ciclo Hidrológico , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...